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INFLUX OF OIL TO A GALLERY OF WATER-PLUGGED WELLS

UDC 532.546N. K. Korsakova and V. I. Pen’kovskii

Within the framework of the Buckley–Leverett scheme, a solution is obtained for the problem of orga-
nization of an influx to a gallery of wells whose near-well zone is contaminated for some reasons by
the water phase. A method of engineering estimates is developed for the moment of penetration of the
front of water displacing oil into the plugged zone of production wells with simultaneous determina-
tion of oil recovery in the reservoir. The results obtained may be used in constructing a mathematical
model of optimized development of oil fields.

Introduction. The Buckley–Leverett mathematical model of immiscible displacement is the simplest one
in the theory of filtration of two-phase fluids. The assumption on the absence of the capillary jump of pressure at
the boundary of movable incompressible liquid phases, which is used in this model, allows one to simplify the initial
system of differential equations and decrease its order by one. Nevertheless, even in the case of one-dimensional
motion with an arbitrarily prescribed initial oil saturation in the reservoir, the solution of initial-boundary problems
implies overcoming of technical difficulties [1, p. 362–398] caused by the formation and propagation of saturation
discontinuities whose determination requires the use of integral laws of conservation of mass.

Within the Buckley–Leverett model, we consider the problem of double displacement: organization of an
influx to the gallery (chain) of productive wells partly plugged by water under the action of excess pressure in a
parallel gallery of wells pumping water into the reservoir. Partial plugging can be caused by penetration of the
drilling agent into the reservoir, stoppage of wells by plugging solutions, or hydraulic fracture of the reservoir. In
the case of the influx, part of the filtrate remains in the near-well zone; as a result, its permeability for the oil phase
is lower than in the main reservoir. The moment when oil-displacing water reaches the partly plugged near-well
zone is important in increasing oil production. From this moment, intense water encroachment of the well begins.
Access of oil into the productive well is hindered by the increasing effect of capillary forces [2, 3], which can be
taken into account using a more complicated model of oil displacement.

1. Formulation of the Problem. We consider a reservoir of unit length. There is a gallery of production
wells in the cross section x = 0 and a gallery of injection wells in the cross section x = 1. The motion is assumed
to be one-dimensional and directed opposite to the x axis. In accordance with the Buckley–Leverett approach, the
pressure p(x, t) in both incompressible fluids is identical. Without loss of generality, we may assume that p(0, t) = 0
and p(1, t) = ∆p(t), where the pressure difference ∆p(t) is an arbitrary function of the time t.

Let at the initial time t = 0 the near-well zone of production wells be “contaminated” by water infiltrate at
a distance 0 6 x 6 x0 = const. We denote the oil saturation by s (1 − s is the water saturation). For t = 0 and
0 6 x 6 x0, we have the oil saturation s(0, x) < 1. To simplify calculations, we assume that s(0, x) = s0 = const in
this region, where s0 < 1 is the mean oil saturation chosen on the basis of the ratio of viscosities α = µ1/µ of the
immiscible phases (µ and µ1 are the viscosities of oil and water, respectively).

After the beginning of motion in the reservoir, four regions changing with time should be distinguished:
1) region of uniform two-phase motion (x ∈ [0, x1(t)]); 2) region of two-phase motion (x ∈ [x1(t), x0]); 3) region
of filtration of the homogeneous fluid (oil) (x ∈ [x0, x2(t)]), s ≡ 1; 4) region of two-phase motion (x ∈ [x2(t), 1]).
Here x1(t) and x2(t) are the fronts of oil and water motion, where jumplike changes in saturation occur.
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In regions 1–3, the initial system of equations is formed by the generalized Darcy laws for both phases

v = −K
µ
f(s)

∂p

∂x
, v1 = −K

µ1
f1(s)

∂p

∂x
(1)

and the laws of conservation of masses

m
∂s

∂t
+
∂v

∂x
= 0, −m ∂s

∂t
+
∂v1

∂x
= 0, (2)

where m is the porosity, K is the permeability of the medium, v, v1 and f , f1 are the velocities and relative phase
permeabilities for oil and water, respectively.

Following [4, p. 113], we assume that f(s) = sn, where n = 3.3 (according to Slichter) and n = 4 (according
to Kozeny). Since capillary forces are ignored and permeability is a characteristic of the effective porous space of
the medium, we should also assume that f1(s) = f(1− s) = (1− s)n. It is known that system (1), (2) has the first
integral v + v1 = V (t) [5]. The fluid velocities are determined by the formulas

v = V (t)F (s), v1 = V (t)(1− F (s)),

where F (s) = αf/[αf + f(1 − s)] is a function that possesses the properties F (0) = 0, F (1) = 1, and F ′(0) =
F ′(1) = 0 and has one maximum at the point s = s∗. The value of s = s∗ is found from the transcendental equation
(1− s∗)[(n− 1)/2 + s∗] = αsn∗ [(n+ 1)/2− s∗]. The overall velocity V (t) and the front positions x1(t) and x2(t) are
to be determined in the course of solving the problem.

Note that, in region 1 of uniform two–phase motion, where s ≡ s0 = const for t = 0, the relations v = v0 =
V (t)F (s0) and v1 = v1,0 = V (t)(1 − F (s0)) are valid, and the prescribed constant saturation is also preserved for
t > 0. In region 3, we have v = V (t) and v1 = 0 (s ≡ 1); therefore, the pressure distribution is a linear function of
the coordinate in accordance with the conventional Darcy law of motion.

To describe the motion of the phases in regions 2 and 4, system (1), (2) is reduced to one first-order equation

∂s

∂τ
+ F ′(s)

∂s

∂x
= 0, (3)

where τ =
1
m

t∫
0

V (t) dt < 0 is the total volume of phases, which is “pumped” during the time t > 0 in the negative

direction of the x axis through the whole reservoir (as a consequence of incompressibility of the fluids).
The necessity of introducing the fronts x1(t) and x2(t) of saturation discontinuity becomes obvious if we

rewrite Eq. (3) in Lagrangian coordinates, the new sought function being the x coordinate of the particle that has
the saturation s at the “time” τ , i.e., x = X(s, τ) and x0 = X(s, 0) is the initial position of the particle. By
calculating the derivatives by the formulas

∂s

∂x
=
(∂X
∂s

)−1

,
∂s

∂τ
=
∂X

∂τ

(∂X
∂s

)−1

,

we convert Eq. (3) to the form

∂X

∂τ
= F ′(s). (4)

2. Construction of the Solution. Equation (4) has the known general integral [5]

X(s, τ) = τF ′(s) + x0(s), (5)

which is obtained from Eq. (3) by the method of characteristics. As applied to regions 2 and 4, the solutions (5)
acquire the following form:

X(s, τ) = τF ′(s) + x0(s) [τ = 0: s(x0 − 0) = s0, s(x0 + 0) = 1]; (6)

X(s, τ) = τF ′(s) + 1 [τ = 0: s(1− 0) = 1, s(1 + 0) = 0]. (7)

Since the function F ′(s) has an ascending [from 0 to F ′(s∗)] and descending [from F ′(s∗) to 0] branches,
the use of Eqs. (6) and (7) within the entire range of variation of the independent variable s in initial-boundary
data becomes impossible if this interval contains the point s = s∗. In the latter case, one should match solutions
determined uniquely on two nonintersecting intervals of the variable s, one belonging to 0 < s < s∗ and the other
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Fig. 1

to s∗ < s < 1. This matching leads to saturation discontinuities at the left boundaries of regions 2 and 4: x = x1(t)
and x = x2(t), respectively. The “volume velocity” of propagation of these boundaries can be found from Eq. (4)

∂x1

∂τ
= F ′(s1),

∂x2

∂τ
= F ′(s2) (8)

if the values of saturation s = s1 and s = s2 are defined as the boundary points of the intervals of uniqueness of
solutions (6) and (7). To find the boundary points, we use the integral law of conservation of masses [5]. Thus, for
region 2, this law is expressed as

−
t∫

0

[1− F (s0)]V (t) dt = m

x0∫
x1(t)

(s− s0) dx.

After simple transformations, taking into account the representation of solution (6), the expression for τ , and the
substitution of the integration variable in the integral of the right part, and integrating by parts, we obtain the
transcendental equation

s1 = s0 + (F (s1)− F (s0))/F ′(s1), (9)

which uniquely determines the value of s1 = const for a given s0.
The calculations show that, for the kerosene–water system (α = 0.67), the saturation s1(s0) at the bound-

ary x1(τ) of region 2 decreases monotonically from s1 = 0.685 to s1 = s∗ with increasing initial saturation s0

from 0 to s0 = s∗ = 0.532. The value of the saturation discontinuity ∆s1(s0) = s1 − s0 decreases even stronger
from ∆s1(0) = 0.685 to ∆s1(s∗) = 0. Obviously, all discontinuities in initial-boundary data (s|x=x0−0 = s0 and
s|x=x0+0 = 1) are smoothed from the beginning of motion in accordance with Eq. (6) for all s0 > s∗, since in this
case all values s ∈ [s0, 1] are within the region of definition of the descending branch of the function F ′(s). The
front of the “labeled” particles moves with the “volume velocity” determined by the first formula in (8), where
s1 = s0 should be set. Hence, for all s0 > s∗, we obtain ∆s1(s0) ≡ 0.

We can show that a formula similar to (9) is valid for the saturation s2 at the moving boundary of region 4:

s2 = s0 + (F (s2)− F (s0))/F ′(s2).

Here s0 6 1 is the oil saturation of the reservoir prior to water injection. In this case, the saturation s2 increases
monotonically from s2 = 0.381 (α = 0.67) to s2 = s∗ = 0.532 with decreasing initial saturation s0 from 1 to s0 = s∗,
and the saturation discontinuity ∆s2(s0) = s2 − s0 decreases from ∆s2(1) = 0.381 to ∆s2(s∗) = 0. For all s0 6 s∗,
the identities s2 ≡ s0 and ∆s2(s0) ≡ 0 are valid. Hence, the discontinuity in initial-boundary data (s|x=1−0 = s0

and s|x=1+0 = 0) is naturally smoothed, since all values s ∈ [0, s0] are within the region of definition of the ascending
branch of the function F ′(s). The dependences s1(s0), ∆s1(s0), s2(s0), and ∆s2(s0) are plotted in Fig. 1.

If the reservoir is “contaminated” by water infiltrate of the drilling fluid or plugging solutions, the motion is

performed along the x axis with a velocity V0, and the value of τ0 =
1
m

t∫
0

V0(t) dt is positive. The distribution of
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Fig. 2

saturation is determined by a formula similar to Eq. (7): X(s, τ0) = τ0F
′(s) [τ0 = 0: s(−0) = 1, s(+0) = 0]. Thus,

the volume of water τ0 that penetrated into the reservoir being known, the length of the plugged zone x0 takes the
form

x0 = τ0F
′(s2). (10)

We determine the mean-integral value 〈s〉 of residual oil saturation in the plugged zone by the formula

〈s〉 =
1
x0

x0∫
0

s dx

and write the equation of mass balance for water that entered the reservoir:

mτ0 = mx0 −m
x0∫
0

s dx.

It follows from this equation and (10) that the value of 〈s〉 depends only on the ratio α of viscosities of the immiscible
fluids and is determined by the formula

〈s〉 = 1− 1/F ′(s2). (11)

For example, we obtain 〈s〉 = 0.30 for α = 0.67 (kerosene–water) and 〈s〉 = 0.42 for α = 0.16. With increasing
viscosity, the mean-integral volume of undisplaced oil always increases (oil recovery decreases).

Returning to constructing the solution of the problem of influx organization, we assume that the initial oil
saturation s0 of the plugged near-well zone equals the mean-integral value 〈s〉 determined by Eq. (11). The values
of saturation s1(s0) and s2(s0) (Fig. 1) establish the ranges of the variable s in formulas (6) and (7): s ∈ [s1(s), 1]
and s ∈ [0, s2(1)], respectively.

Figure 2 shows the distributions of oil saturation in the reservoir (α = 0.67) for two values of the “pumped”
volume of water: τ1 = −0.17 and τ2 = −0.35 (curves 1 and 2, respectively). The value of τ2 is chosen from the
condition x2 = x0 = 0.5, where the front of the pumped-in water merges with the front of the remaining water in
the plugged zone. In our case, τ2 = (1−x0)/F ′(s2). The experiments of [6] show that rapid water encroachment of
production wells starts from this moment, and capillary forces hindering oil influx start to play an important role
in the course of oil displacement.

To find the relationship between the variable τ and physical time t, we note that the total prescribed pressure
difference ∆p(t) in the galleries is, obviously, represented as a sum of pressure differences in each region:

∆p(t) = (∆p(t))1 + (∆p(t))2 + (∆p(t))3 + (∆p(t))4. (12)

The differences (∆p(t))1 and (∆p(t))3 in regions of uniform two-phase flow and uniform flow with a linear pressure
distribution have the form
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Fig. 3

(∆p)1 = −µ1

K
V (t)

x1

αf(s0) + f(1− s0)
= −µ1

K
V (t)

τF ′(s1) + x0

αf(s0) + f(1− s0)
,

(∆p)3 = − µ
K
V (t)(x2 − x0) = − µ

K
V (t)[(τF ′(s2) + (1− x0)].

In regions 2 and 4, we obtain from Eq. (1)

∂p

∂x
= − µ

K
V (t)

F (s)
f(s)

.

Therefore, the pressure differences are determined as follows:

(∆p)2 =

x0∫
x1

∂p

∂x
dx = − µ

K
V (t)τ

1∫
s1

F (s)
f(s)

F ′′(s) ds,

(∆p)4 =

1∫
x2

∂p

∂x
dx = − µ

K
V (t)τ

0∫
s2

F (s)
f(s)

F ′′(s) ds.

We denote

I(x) =

x∫
0

F (s)
f(s)

F ′′(s) ds.

Figure 3 shows the functions I(x) for various values of α. Substituting the resultant values of pressure differences
into Eq. (12), after simple transformations, we obtain a differential equation for the variable τ(t):

a
dτ2

dt
− b dτ

dt
=

K

mµ
∆p(t).

Here −a/2 = αF ′(s1)x1/(αf(s0)+f(1−s0))+F ′(s2)+I(1)−I(s1)−I(s2) and b = αx0/(αf(s0)+f(1−s0))+1−x0.
Integrating the last equation with respect to t with the initial condition τ(0) = 0, we obtain the quadratic equation

aτ2 − bτ − P (t) = 0
(
P (t) =

K

mµ

t∫
0

∆p(t) dt
)
,

which has two real roots with different signs. The negative root τ = (b−
√
b2 + 4aP (t) )/(2a) has a physical meaning;

this root establishes the relationship between the total linear volume of water “pumped” into the reservoir τ and
the integral pressure difference P (t) between the galleries of wells. As an example, we give the values of the main
parameters of the problem calculated (x0 = 0.5) for two values of α. We have s0 = 0.30, s1 = 0.63, s2 = 0.38,
a = 8.58, and b = 1.63 for α = 0.67 and s0 = 0.42, s1 = 0.73, s2 = 0.50, a = 5.44, and b = 1.01 for α = 0.16.
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Conclusions. The Buckley–Leverett system simulating the joint filtration of immiscible incompressible
fluids allows one to describe the process of organization of an influx to the gallery of wells in the case of oil
displacement by water. The description is adequate until water pumped into the reservoir penetrates into the
near-well zone of production wells, which is partly plugged by water infiltrate, and forms a kind of a “water pipe”
from one gallery to the other. At this stage of displacement, the mean-integral value of displaced oil and, hence,
oil saturation are independent of the depth of water penetration and are determined by the ratio of water and oil
viscosities only. At the subsequent stage of rapid water encroachment of the wells with comparatively slow washing
out of the remaining oil, in our opinion, capillary forces, which are ignored in the Buckley–Leverett equations,
should play an important role. The construction of the solution shows that the assumptions on the dependences of
the relative permeabilities of the phases on saturation, which were accepted in [4], are not principal constraints.

The formulas obtained may be used in processing of experimental data under conditions of a standard
laboratory experiment.
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